当前位置:小院首页 > 小院资源

文献分享:Yield gap analysis with local to global relevance—A review

发布时间:2023-12-24

6585478ede294.png


文章信息

原名:Yield gap analysis with local to global relevance—A review

译名:具有本地与全球相关性的产量差距分析——综述

期刊:Field crops research

5年影响因子:6.9

在线发表时间:2013.03.1

通讯作者:Martin K. van Ittersum

第一单位:瓦赫宁根大学植物生产系统组

文章亮点

定义了与产量差距分析相关的概念。

回顾了本地和全球产量差距分析的不同方法.

全局方法比较粗糙,局部研究使用不同的方法。

使用来自三个地区的数据集对多种方法进行了比较。

 

01研究背景

未来几十年,农作物产量必须大幅增加,才能满足人口和收入增长驱动的全球粮食需求。最终,全球粮食生产能力将受到可用于农作物生产的土地和水资源数量以及农作物生长的生物物理限制的限制。需要以一致和透明的方式量化当前每公顷农田的粮食生产能力,以便为旨在影响未来作物产量和土地利用的政策、研究、开发和投资决策提供信息,并为当地农民的实地行动提供信息通过他们的知识网络。作物生产能力可以通过估计潜在产量和限水产量水平来评估,分别作为灌溉和雨养条件下作物生产的基准。这些理论产量水平与农民实际产量之间的差异决定了产量差距,而关于这些产量差距的精确的空间明确知识对于指导农业的可持续集约化至关重要。本文回顾了估计产量差距的方法,重点关注结果的本地与全球相关性。经验方法根据农民产量的 90 95 个百分点、实验站的最大产量、种植者产量竞赛或边界函数来估计产量潜力;这些与潜在产量或水限制产量的作物模拟进行比较。比较利用来自肯尼亚西部、内布拉斯加州(美国)和维多利亚(澳大利亚)的详细数据集。然后我们回顾通常由非农业科学家进行的全球研究,旨在评估产量,有时评估产量差距,并比较内布拉斯加州、肯尼亚和荷兰地区的几项研究结果。根据我们的审查,我们推荐了可在本地到全球范围内应用的产量差距评估的关键组成部分。

02研究方案

在这些区域内,考虑到作物当前的空间分布,对主要土壤和耕作系统进行模拟。强调需要准确的农艺和当前产量数据以及经过校准和验证的作物模型和升级方法。

03研究结果

这些模拟模型是我们目前对生物物理作物过程(物候、碳同化、同化分配)和作物对环境因素反应的理解的数学表示(有关许多作物生长模型的概述,请参见Van Ittersum Donatelli2003 年))。此类模型旨在解释 G × E × M 相互作用。它们需要特定地点的输入,例如每日天气数据、作物管理实践(播种日期、品种成熟度、植物密度)、土壤特性和播种时初始条件的规范(例如土壤水的可用性)以及确保养分的模型配置是非限制性的。尽管当前耕作系统中天气、土壤和管理实践的规范对于 Yp Yw 稳健模拟至关重要,但对于大多数具有足够地理空间细节的耕作系统来说,这些数据通常无法获得,即使在发达国家也是如此。此外,还需要严格评估模型重现接受近乎最佳管理实践的大田作物测得产量的能力,表 1总结了我们建议用于产量差距评估的作物生长模拟模型的关键属性。

658547c72ae65.png

Both Yp and Yw are defined by crop species, cultivar, climate, soil type (Yw), and water supply (Yw), and thus both Yp and Yw are highly variable across and within regions. However, it is impossible for a large population of farmers to achieve the perfection in crop and soil management required to achieve Yp or Yw, and generally it is not cost-effective to do so because yield response to applied inputs follows diminishing returns when farm yields approach ceiling yields (Koning et al., 2008, Lobell et al., 2009). Also, there may be valid reasons from a resource use efficiency point of view (De Wit, 1992) to aim for closing yield gaps at a lower yield level threshold relative to Yp or Yw under conditions with greater uncertainty in factors governing these ceiling yields—such as high temperatures, variable rainfall, high winds that promote lodging, and so forth. Because average farm yields tend to plateau when they reach 75–85% of Yp or Yw, the exploitable yield gap is smaller than Yg (Van Ittersum and Rabbinge, 1997, Cassman, 1999, Cassman et al., 2003). Taken together, Yp, Yw, Yg, and WP determine crop production potential of current cropping systems with available land and water resources. A schematic representation of these critical parameters is presented in Fig. 1.

658547da7460b.png

658547e3e4f46.png

Fig. 1. Different production levels as determined by growth defining, limiting and reducing factors (a). Yield potential (Yp) of irrigated crops without limitations due to water deficiency or surplus is determined by solar radiation (R), temperature regime (T), and growth duration from planting to maturity. For crops grown under rainfed conditions, the water-limited yield (Yw) represents the ceiling yield (Van Ittersum and Rabbinge, 1997). The exploitable yield gap (b) represents the difference between average yields and 80% of Yp or Yw, as explained in the text (modified from Lobell et al., 2009).

We argue crop simulation modelling is the most reliable way to estimate Yp or Yw and Yg in the context of a specific crop within a defined cropping system because these models can account for interactions among weather, soils and management. Yp, Yw, and Yg estimates based on simulation models are not single values, but rather probability distributions with a mean and range (Fig. 2). Variability in Yw and Yp reflects not only differences in management practices among fields, but also variability in weather and soils across years and fields. Weather variability poses a dilemma for farm managers who face large uncertainty about yield-affecting conditions in the season ahead, which in turn creates uncertainty about the most appropriate level of inputs. If they apply input levels in excess of amounts needed for maximum profit in a year when Yp or Yw is below average due to unfavourable weather, they will likely achieve a small Yg but with smaller profit. On the other hand, if farmers invest too little inputs in a year with high Yp or Yw due to favourable weather, they will miss the possibility of achieving a large profit and will have a large Yg. This is the case for rainfed maize and wheat cropping system examples in Kenya and Australia. However, an important distinction is that, while Australian farmers face greater uncertainty about Yw, they are also much better equipped to cope with this uncertainty, due to better access to information and inputs, than Kenyan farmers who often also face labour constraints because of manual ploughing and weeding. As a result, yield gaps are much smaller for rainfed wheat in Australia compared to rainfed maize in Kenya (Yg-to-Ya ratio of 0.4 and 2.2, respectively—Table 2). In the case of irrigated maize in Nebraska, access to irrigation water compensates for weather variability and associated risk, allowing crop producers to optimize their farm management and achieve small Yg (Yg-to-Ya ratio of 0.1).

03研究结论

提出了作物产量差距分析的定义和概念,并比较了不同的产量差距评估方法。这种比较被用作提出一套产量差距评估协议原则的基础,该协议可以跨空间尺度应用,并产生与当地相关的产量差距估计。该协议,包括天气、土壤、耕作系统管理和作物生长模拟模型的不确定性对 Yg 的影响,仍有待测试和完善,这一过程目前在全球产量差距地图集项目 (www.yieldgap.org) 中进行)。所提出方法的主要优点是其强大的农艺基础和使用全球一致的程序,可以根据 YpYw Yg 的测量产量进行验证。天气、土壤、全球各地的作物管理和实际产量差异很大,将决定是否使用第一或第二最佳的数据源选择。作物模型通常适用于主要作物,例如主要谷物、大豆和马铃薯,但适用于木薯和各种豆类等其他作物的模型则少得多。草地和多年生作物(如油棕、香蕉、橄榄和柑橘)的产量差距分析经验更加有限

原文链接:https://www.sciencedirect.com/science/article/pii/S037842901200295X


黑龙江林口稻蟹科技小院

培养单位:东北农业大学

联合培养单位:黑龙江省林口县农业农村局

所属地区:黑龙江省牡丹江市
详情地址:
联系电话:045155191618

版权所有 全国农业专业学位研究生教育指导委员会 版权所有 Copyright © All Rights Resserved 京ICP备 05004632号-3

当前位置:小院首页 > 小院资源

文献分享:Yield gap analysis with local to global relevance—A review

发布时间:2023-12-24

6585478ede294.png


文章信息

原名:Yield gap analysis with local to global relevance—A review

译名:具有本地与全球相关性的产量差距分析——综述

期刊:Field crops research

5年影响因子:6.9

在线发表时间:2013.03.1

通讯作者:Martin K. van Ittersum

第一单位:瓦赫宁根大学植物生产系统组

文章亮点

定义了与产量差距分析相关的概念。

回顾了本地和全球产量差距分析的不同方法.

全局方法比较粗糙,局部研究使用不同的方法。

使用来自三个地区的数据集对多种方法进行了比较。

 

01研究背景

未来几十年,农作物产量必须大幅增加,才能满足人口和收入增长驱动的全球粮食需求。最终,全球粮食生产能力将受到可用于农作物生产的土地和水资源数量以及农作物生长的生物物理限制的限制。需要以一致和透明的方式量化当前每公顷农田的粮食生产能力,以便为旨在影响未来作物产量和土地利用的政策、研究、开发和投资决策提供信息,并为当地农民的实地行动提供信息通过他们的知识网络。作物生产能力可以通过估计潜在产量和限水产量水平来评估,分别作为灌溉和雨养条件下作物生产的基准。这些理论产量水平与农民实际产量之间的差异决定了产量差距,而关于这些产量差距的精确的空间明确知识对于指导农业的可持续集约化至关重要。本文回顾了估计产量差距的方法,重点关注结果的本地与全球相关性。经验方法根据农民产量的 90 95 个百分点、实验站的最大产量、种植者产量竞赛或边界函数来估计产量潜力;这些与潜在产量或水限制产量的作物模拟进行比较。比较利用来自肯尼亚西部、内布拉斯加州(美国)和维多利亚(澳大利亚)的详细数据集。然后我们回顾通常由非农业科学家进行的全球研究,旨在评估产量,有时评估产量差距,并比较内布拉斯加州、肯尼亚和荷兰地区的几项研究结果。根据我们的审查,我们推荐了可在本地到全球范围内应用的产量差距评估的关键组成部分。

02研究方案

在这些区域内,考虑到作物当前的空间分布,对主要土壤和耕作系统进行模拟。强调需要准确的农艺和当前产量数据以及经过校准和验证的作物模型和升级方法。

03研究结果

这些模拟模型是我们目前对生物物理作物过程(物候、碳同化、同化分配)和作物对环境因素反应的理解的数学表示(有关许多作物生长模型的概述,请参见Van Ittersum Donatelli2003 年))。此类模型旨在解释 G × E × M 相互作用。它们需要特定地点的输入,例如每日天气数据、作物管理实践(播种日期、品种成熟度、植物密度)、土壤特性和播种时初始条件的规范(例如土壤水的可用性)以及确保养分的模型配置是非限制性的。尽管当前耕作系统中天气、土壤和管理实践的规范对于 Yp Yw 稳健模拟至关重要,但对于大多数具有足够地理空间细节的耕作系统来说,这些数据通常无法获得,即使在发达国家也是如此。此外,还需要严格评估模型重现接受近乎最佳管理实践的大田作物测得产量的能力,表 1总结了我们建议用于产量差距评估的作物生长模拟模型的关键属性。

658547c72ae65.png

Both Yp and Yw are defined by crop species, cultivar, climate, soil type (Yw), and water supply (Yw), and thus both Yp and Yw are highly variable across and within regions. However, it is impossible for a large population of farmers to achieve the perfection in crop and soil management required to achieve Yp or Yw, and generally it is not cost-effective to do so because yield response to applied inputs follows diminishing returns when farm yields approach ceiling yields (Koning et al., 2008, Lobell et al., 2009). Also, there may be valid reasons from a resource use efficiency point of view (De Wit, 1992) to aim for closing yield gaps at a lower yield level threshold relative to Yp or Yw under conditions with greater uncertainty in factors governing these ceiling yields—such as high temperatures, variable rainfall, high winds that promote lodging, and so forth. Because average farm yields tend to plateau when they reach 75–85% of Yp or Yw, the exploitable yield gap is smaller than Yg (Van Ittersum and Rabbinge, 1997, Cassman, 1999, Cassman et al., 2003). Taken together, Yp, Yw, Yg, and WP determine crop production potential of current cropping systems with available land and water resources. A schematic representation of these critical parameters is presented in Fig. 1.

658547da7460b.png

658547e3e4f46.png

Fig. 1. Different production levels as determined by growth defining, limiting and reducing factors (a). Yield potential (Yp) of irrigated crops without limitations due to water deficiency or surplus is determined by solar radiation (R), temperature regime (T), and growth duration from planting to maturity. For crops grown under rainfed conditions, the water-limited yield (Yw) represents the ceiling yield (Van Ittersum and Rabbinge, 1997). The exploitable yield gap (b) represents the difference between average yields and 80% of Yp or Yw, as explained in the text (modified from Lobell et al., 2009).

We argue crop simulation modelling is the most reliable way to estimate Yp or Yw and Yg in the context of a specific crop within a defined cropping system because these models can account for interactions among weather, soils and management. Yp, Yw, and Yg estimates based on simulation models are not single values, but rather probability distributions with a mean and range (Fig. 2). Variability in Yw and Yp reflects not only differences in management practices among fields, but also variability in weather and soils across years and fields. Weather variability poses a dilemma for farm managers who face large uncertainty about yield-affecting conditions in the season ahead, which in turn creates uncertainty about the most appropriate level of inputs. If they apply input levels in excess of amounts needed for maximum profit in a year when Yp or Yw is below average due to unfavourable weather, they will likely achieve a small Yg but with smaller profit. On the other hand, if farmers invest too little inputs in a year with high Yp or Yw due to favourable weather, they will miss the possibility of achieving a large profit and will have a large Yg. This is the case for rainfed maize and wheat cropping system examples in Kenya and Australia. However, an important distinction is that, while Australian farmers face greater uncertainty about Yw, they are also much better equipped to cope with this uncertainty, due to better access to information and inputs, than Kenyan farmers who often also face labour constraints because of manual ploughing and weeding. As a result, yield gaps are much smaller for rainfed wheat in Australia compared to rainfed maize in Kenya (Yg-to-Ya ratio of 0.4 and 2.2, respectively—Table 2). In the case of irrigated maize in Nebraska, access to irrigation water compensates for weather variability and associated risk, allowing crop producers to optimize their farm management and achieve small Yg (Yg-to-Ya ratio of 0.1).

03研究结论

提出了作物产量差距分析的定义和概念,并比较了不同的产量差距评估方法。这种比较被用作提出一套产量差距评估协议原则的基础,该协议可以跨空间尺度应用,并产生与当地相关的产量差距估计。该协议,包括天气、土壤、耕作系统管理和作物生长模拟模型的不确定性对 Yg 的影响,仍有待测试和完善,这一过程目前在全球产量差距地图集项目 (www.yieldgap.org) 中进行)。所提出方法的主要优点是其强大的农艺基础和使用全球一致的程序,可以根据 YpYw Yg 的测量产量进行验证。天气、土壤、全球各地的作物管理和实际产量差异很大,将决定是否使用第一或第二最佳的数据源选择。作物模型通常适用于主要作物,例如主要谷物、大豆和马铃薯,但适用于木薯和各种豆类等其他作物的模型则少得多。草地和多年生作物(如油棕、香蕉、橄榄和柑橘)的产量差距分析经验更加有限

原文链接:https://www.sciencedirect.com/science/article/pii/S037842901200295X


版权所有 全国农业专业学位研究生教育指导委员会
版权所有 Copyright © All Rights Resserved
京ICP备 05004632号-3